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A B  S T  R  A  C  T  

Purpose: The diagnosis of auditory processing disorder (APD) is controversial 
particularly due to the influence of higher order factors of language and cognition 
on the diagnostic APD testing. As a result, there might be a need for testing for 
other domains (e.g., cognition) along with conducting the diagnostic APD testing 
to rule out the influence of other domains. In order to make recommendations on 
whether cognitive testing is needed along with the auditory processing testing, as 
a starting point, the current study was conducted to examine the relationship 
between cognitive abilities and basic auditory processing in young adults. 
Method: A total of 38 young adults with normal audiometric thresholds between 
250 and 8000 Hz participated in this study. They were tested on their executive 
function, language, processing speed, working memory, and episodic memory 
components of cognitive testing and tests for temporal fine structure and spec-
trotemporal sensitivity for auditory processing testing. 
Results: No significant correlation was found between the cognitive tests and 
the tests for basic auditory processing in young adults. 
Conclusions: These findings present contrast to the existing findings in children 
and older adults where a stronger correlation between cognitive abilities and 
auditory processing has been found. The current findings suggest that testing 
for cognitive abilities may not be needed when testing for basic auditory pro-
cessing in young adults. 
Auditory Processing Disorder (APD), Central Audi-
tory Processing Disorder, or (Central) Auditory Processing 
Disorder, is one of the most intriguing and controversial 
topics in the field of audiology. Some aspects that make 
APD problematic, both in theory and in clinical practice, 
include comorbidity with other disorders (e.g., dyslexia), 
lack of gold standard (Moore, 2018; Vermiglio, 2018), and 
influence of higher order factors of language and cognition 
on the diagnostic testing of APD (Cacace & McFarland, 
2008, 2013; Dillon & Cameron, 2021). In order to make rec-
ommendations on whether testing of higher order factors 
(e.g., cognition) should accompany testing for auditory 
processing, investigations should be conducted to study 
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the extent of relationship between these higher order fac-
tors and auditory processing. As a starting point in the 
direction, the current study was conducted to examine the 
relationship between cognitive abilities and basic auditory 
processing in young adults. 

According to the American Speech-Language-Hearing 
Association (ASHA, 2005a, Definition and Nature of APD, 
Paragraph 1), APD is defined as a deficit in one or more of 
the following auditory processes: temporal processing 
including temporal integration, temporal ordering, and tem-
poral masking; auditory discrimination and auditory pro-
cessing in adverse listening conditions; and binaural audi-
tory processing including sound localization and lateraliza-
tion, and dichotic listening. According to the American 
Academy of Audiology (AAA, 2010), APD can be defined 
as “difficulties in the perceptual processing of auditory 
information in the central nervous system and the
4 American Speech-Language-Hearing Association 1
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neurobiological activity that underlies processing.” Further-
more, ASHA (2005b) suggests that APD is limited to defi-
cits in the processing of information in the auditory nervous 
system and is not a result of higher order factors such as 
language/cognition. Some examples of behavioral tests that 
are suggested for APD testing include Dichotic Digit/ 
Consonant–Vowel test, Pitch/Duration Pattern test, Gap 
Detection test, and Speech-in-Noise test (ASHA, 2005a). 
An APD diagnosis can be given if scores less than 2 or 3 
SDs on the behavioral testing is achieved (AAA, 2010; 
ASHA, 2005b). One of the central points of controversy 
around APD since the past several decades has been 
whether APD is and/or should be specific to the auditory 
domain. According to some reports, the distinctiveness of 
APD as a disorder can be confirmed only if APD can be 
shown to be specific to the auditory domain (Cacace & 
McFarland, 2008, 2013; Jerger & Musiek, 2000). On the 
other hand, there are reports that suggest that it may not be 
accurate to consider APD as a domain-specific disorder, 
mainly due to the inability to separate auditory processing 
from cognition (Dillon et al., 2014; Moore & Ferguson, 
2014). In addition, the position statement by the British 
Society of Audiology (2018) reflects that APD may consist 
of aspects related to speech, language, reading, memory, 
and executive function. To summarize, APD as a concept 
has been controversial as there is no consensus across our 
national and international societies on whether higher order 
factors of language and cognition should be considered 
within the definition of APD. This position is further com-
plicated by the existing test battery of APD that is influ-
enced by the aforementioned factors. 

APD has been found to exhibit comorbidity with 
other disorders such as dyslexia, developmental language 
disorder (DLD), and attention-deficit/hyperactivity disor-
der (Dawes & Bishop, 2009, 2010; de Wit et al., 2016, 
2018; Miller & Wagstaff, 2011; Sharma et al., 2009). 
Those diagnosed with APD and those diagnosed with dys-
lexia have been found to perform similarly on the tasks 
related to auditory processing, IQ, language, and literacy. 
As a result, there is significant overlap (almost 50%) 
between those diagnosed with APD and those with dys-
lexia or DLD (Dawes & Bishop, 2010). Furthermore, it 
has also been found that those diagnosed with APD also 
perform poorly on the tasks related to language and com-
munication, and attention and memory (de Wit et al., 
2016), and there were minimal differences between those 
diagnosed with APD and those affected with developmen-
tal disorders. It is to be noted that the issues related to 
comorbidity of APD with other disorders, and lack of 
specificity of APD to the auditory domain, might stem 
from the fact that the current behavioral APD test batte-
ries, based on the characteristics of APD defined by 
ASHA (2005a) and AAA (2010), are affected by domains 
•2 American Journal of Audiology 1–11
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outside audition. For example, speech-in-noise testing can 
be influenced by linguistic abilities, duration and pitch 
pattern tests can be influenced by differences in memory, 
and all behavioral APD tests require attention of the par-
ticipant. Thus, it is possible that the effects of lack of 
domain specificity and comorbidity are potentially stem-
ming from the confounding effect of the constituents of 
the tests. 

Previous research has found significant correlation 
between auditory processing and cognitive testing. Studies 
have found a correlation between working memory and 
auditory processing (Keller et al., 2006; Riccio et al., 
2005; Sharma et al., 2009; Wilson et al., 2011). There are 
also studies that have found significant correlation of 
auditory processing with attention (Moore et al., 2010; 
Sharma et al., 2009) and nonverbal IQ (Ferguson et al., 
2011; Gyldenkærne et al., 2014) components of cognitive 
testing. However, it is to be noted that these studies 
included the auditory processing tests that involved higher 
order factors of language and cognition. For example, 
tests such as frequency pattern and dichotic digits heavily 
involve working memory, whereas staggered spondaic 
word test involves language component. 

In order to circumvent the effects of the confound-
ing higher order factors (e.g., language, working memory, 
etc.), there have been suggestions regarding the use of test 
batteries that investigate the lower level or basic auditory 
processing, which is relatively independent of the extrane-
ous factors of language and cognition (Maggu & Overath, 
2021). On the other hand, there are also suggestions on 
the use of multidomain testing approach for APD where 
other domains are also tested along with the auditory 
domain. For example, conducting language testing along 
with APD testing to rule out the influence of language 
and thus ascertaining that the observed effect is from the 
auditory domain. In any case, understanding the effect of 
these higher order factors on auditory processing is vital. 
Furthermore, it is even more vital to study the effects of 
these higher order factors (e.g., cognition) on auditory 
processing after controlling the confounding effects of 
these higher order factors from these tests, that is, to test 
the relationship between cognitive abilities and low-level 
auditory processing. Recently, one such test battery 
known as the Portable Auditory Rapid Testing (PART) 
battery has been developed by the University of California 
Brain Game Center (Gallun et al., 2018). PART battery 
contains subtests that aimed at evaluating tone perception 
in noise, gap detection, temporal modulation (TM), spec-
tral modulation (SM), spectrotemporal modulation 
(STM), and competing sentence perception. PART battery 
is free-downloadable and can be run via an iPad. PART 
battery has been validated on young normal-hearing indi-
viduals with a decent test–retest reliability across sessions
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(Lelo de Larrea-Mancera et al., 2020), and across sites 
(Gallun et al., 2018) along with reliability of administra-
tion of the battery on participant-owned devices (Lelo de 
Larrea-Mancera et al., 2022) further adding to its versatil-
ity to conduct remote assessments. As a result, PART bat-
tery has started to find its usage in testing of clinical pop-
ulation (Diedesch et al., 2021). Diedesch et al. (2021) con-
ducted a study with nine young normal-hearing subjects 
(Mage = 21.3 years) and seven older hearing-impaired sub-
jects (Mage = 64.9 years) where they found an overall sig-
nificant correlation of pure-tone average of 500, 1000, 
2000, and 4000 Hz with the PART battery measures. Sub-
tests of PART battery have been used to study their rela-
tionship with cognitive abilities (Charney & Srinivasan, 
2020). Charney and Srinivasan (2020) compared 15 young 
adults (Mage = 25.25 years) with 25 older adults (Mage = 
64.04 years) on their working memory and spatial release 
of masking component of PART battery and they found 
that there was difference between the two groups on both 
spatial release and cognitive abilities. Furthermore, they 
also found a significant correlation between spatial release 
of masking and cognitive abilities. However, it was 
unclear whether the correlation in their study was driven 
by one or both the groups. In the current study, we are 
interested in examining the temporal fine structure (TFS) 
and spectrotemporal sensitivity (STS) components of the 
PART battery. TFS components were selected because 
TFS tests have been found to examine the timing of audi-
tory nerve fibers, which has been found to correlate with 
speech perception in noise (Füllgrabe et al., 2015). More 
specifically, TFS has been found to be affected in cases of 
auditory neural degeneration (e.g., in aging, Füllgrabe 
et al., 2015). Similarly, gap detection has been found to be 
affected in individuals with APDs, especially temporal 
processing deficits (Dias et al., 2012; Phillips et al., 2010). 
Those with binaural processing deficits may show discrep-
ancies across the diotic versus dichotic frequency modula-
tion tasks (Diedesch et al., 2021). STS components includ-
ing SM, TM, and STM were used in order to employ 
complex signals that share similarities with speech signals, 
in terms of frequency and TMs, to challenge the central 
auditory system but without tapping into the linguistic 
resources (e.g., speech processing) in the brain (Diedesch 
et al., 2021). 

To summarize, in the current study, we aimed at 
understanding the extent to which cognitive abilities influ-
ence basic auditory processing in young adults with nor-
mal hearing. For testing auditory processing, we used the 
PART battery developed by the University of California 
Brain Game Center (Gallun et al., 2018). More specifi-
cally, we used tests for TFS and STS. For evaluating cog-
nitive abilities, we used the cognition battery of the 
National Institutes of Health Toolbox (Weintraub et al., 
Downloaded from: https://pubs.asha.org Katie Poe on 04/02/2024, Te
2014). The cognition battery consisted of tests focusing on 
executive function, memory (episodic and working), lan-
guage, and processing speed. We conducted separate Pearson 
correlation tests to understand the extent of relationship 
between cognitive abilities and basic auditory processing. 
Depending on the correlation results between the cognitive 
abilities and basic auditory processing, we aimed at making 
recommendations on whether testing for cognitive abilities is 
needed during testing for basic auditory processing and, if 
yes, for which specific basic auditory processing tests. 
Method 

Participants 

A total of 48 young adults were recruited via post-
ing flyers or via the SONA Systems (n.d.) of Hofstra Uni-
versity. They were either paid at the rate of $10/hr or were 
granted course credits for their participation in the study. 
This study was approved by the institutional review board 
of Hofstra University (HUIRB Approval Ref#: 20220826-
SLH-HPHS-MAG-1). To participate in the study, subjects 
signed a written, informed consent form. There was no 
time limit for them to read and sign the consent form. 
Their questions, if any, were answered. After excluding 10 
outlier subjects, who were unable to complete the auditory 
processing tasks and/or cognitive tasks due to time-
constraint or technical difficulties, we went ahead with 
analyzing the available data from 38 subjects (11 men and 
27 women; Mage = 19.28 years). For completing the fol-
lowing method subsections, a total of 100 min were 
needed by each subject. All testing was conducted by stu-
dent research assistants who were trained by the principal 
investigator (first author). 

Hearing Testing 

All participants were evaluated for their air-
conduction hearing abilities between 250 and 8000 Hz via 
a GSI-18 audiometer (Grason-Stadler Inc.) using pure 
tones routed via TDH-39 supra-aural headphones, in a 
quiet acoustically padded room. All participants were 
required to have pure-tone thresholds of ≤ 25 dB HL 
between 250 and 8000 Hz. Figure 1 depicts the hearing 
thresholds for all participants for their right (see Figure 
1A) and left (see Figure 1B) ears. 

Cognitive Testing 

In order to test the cognitive domains of executive 
function and attention, episodic memory, language, work-
ing memory, and processing speed, cognitive testing was 
conducted using the National Institutes of Health (NIH)
Maggu & Sharma: Cognitive Abilities and Auditory Processing 3
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Figure 1. Audiograms depicting the thresholds of the 38 subjects for the (A) right ear and (B) left ear. Red and blue lines correspond to the 
mean thresholds for the right ear and left ear, respectively. 
Toolbox Cognition Battery (Weintraub et al., 2013, 2014) 
via an iPad (9th Gen, Version 15.4.1). In order to test 
executive function and attention, the Dimensional Change 
Card Sort (Zelazo, 2006), which evaluates the ability to 
switch conceptual frameworks, and Flanker task (Eriksen 
& Eriksen, 1974), which evaluates inhibitory control and 
selective control, were used. For testing episodic memory, 
Picture Sequence Memory subtest that contained nonver-
bal picture stimuli was used. For testing language, Picture 
Vocabulary Test was used. For testing working memory, 
the List Sorting Working Memory Test was used. For 
testing processing speed, Pattern Comparison Processing 
Speed Test was used. Table 1 summarizes the different 
cognitive domains that were tested by different tests within 
the NIH cognition battery. 

Auditory Processing Testing 

For evaluating basic auditory processing, we used 
subsections from the PART battery (Gallun et al., 2018). 
PART was downloaded on an iPad (9th Gen, Version 
15.4.1) via the App Store. We used the subtests of PART 
that addressed the TFS and STS. For evaluating TFS, we 
used gap detection, diotic frequency modulation, and 
•

Table 1. Summary of the tests that were used from the National 
Institutes of Health (NIH) Toolbox Cognition Battery and the corre-
sponding cognitive domains tested. 

NIH Toolbox Cognition Battery tests 
Cognitive domain 

tested

• Dimensional Change Card Sort Test

• Flanker Inhibitory Control and 
Attention Test 

Executive function 

Picture Vocabulary Test Language 

Pattern Comparison Processing Speed 
Test 

Processing speed 

List Sorting Working Memory Test Working memory 

Picture Sequence Memory Test Episodic memory 

4 American Journal of Audiology 1–11
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dichotic frequency modulation subtests. For evaluating 
STS, we used TM, SM, and STM tasks of the PART bat-
tery (see Diedesch et al., 2021; Lelo de Larrea-Mancera 
et al., 2020). 

TFS Tasks 
Gap detection test (Gallun et al., 2014; Hoover et al., 

2019) included the subjects to identify the pair of tonebursts 
that had a gap between them as compared to that pair that 
was played sequentially and did not have a gap between 
them. Smallest perceived gap was ascertained via the staircase 
method starting at the initial value of 20 ms. Stimuli consisted 
of 4-ms 500 Hz tonebursts that were presented diotically. 

Diotic Frequency Modulation (FM; Grose & Mamo, 
2012; Hoover et al., 2019; Whiteford et al., 2017; Whiteford 
& Oxenham, 2015) consisted of comparing 2 Hz modulation 
rate to standards with carrier frequency between 460 and 550 
Hz. Smallest perceived modulation detection was obtained 
via the staircase method starting at an initial value of 6 Hz 
in a diotic manner. 

Dichotic FM (Grose & Mamo, 2012; Hoover et al., 
2019) consisted of stimuli that were similar to the diotic 
FM task with the exception that the target 2 Hz modula-
tion rate is presented in an antiphasic manner between the 
ears. Smallest perceived modulation detection was obtained 
via the staircase method starting at an initial value of 3 Hz 
in a dichotic manner. 

Spectrotemporal Sensitivity Tasks 
Stimulus used for these tasks is 400–8000 Hz broad-

band noise that could be unmodulated, spectrally modulated, 
temporally modulated, or spectrotemporally modulated. 

TM (Viemeister, 1979) entailed comparison of 4 Hz 
temporal amplitude modulation to the unmodulated stan-
dard stimulus. Smallest perceived modulation depth (in dB) 
was obtained.
rms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



SM (Hoover et al., 2018) entailed comparison of 2 
cycles per octave to the unmodulated standard. Smallest 
perceived modulation depth (in dB) was obtained. 

STM (Bernstein et al., 2013; Mehraei et al., 2014) 
contained stimuli similar to the TM and SM tasks and 
entailed comparing the 2 cycles per octave and 4 Hz ampli-
tude modulation to the unmodulated standards. Smallest 
perceived modulation depth (in dB) was obtained. 

Planned Statistical Analysis 

In order to understand the relationship between each 
of the tests of the basic auditory processing test battery 
with each of the tests of the cognitive test battery, a total 
of 36 Pearson correlations were conducted. To overcom-
ing the risk of increasing the Type I error, that is, errone-
ously detecting an effect in the absence of any true effect, 
Bonferroni correction was applied to obtain an adjusted 
target p value (Curtin & Schulz, 1998). In this case, the 
adjusted target p value came out to be .0014 (i.e., 0.05/36). 
 
 
 

 

 

Results 

Descriptive data analysis (see Figure 2) revealed that 
the results from Dichotic FM (M = 0.49,  SD = 0.06), Gap
Detection (M = 2.29,  SD = 1.59),  Diotic FM (M = 8.95,
SD = 5.35), SM (M = 1.83,  SD = 0.11),  TM  (M = 1.93,
SD = 0.69),  and  STM (M = 1.55,  SD = 1.28) were similar to 
those found in the previous studies that have used the PART 
battery or similar tests (Gallun et al., 2014, 2018; Grose & 
Mamo, 2012; Hoover et al., 2015, 2019; Viemeister, 1979). 
Figure 2. Bar plots describing the mean performance of the subjects on (
ulation, (E) Temporal Modulation, and (F) Spectrotemporal Modulation. Er
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In order to examine the relationship between cogni-
tive abilities and basic auditory processing abilities, a 
total of 36 correlations were conducted. For a correlation 
to be significant, the p value needed was < .0014 after cor-
recting for multiple comparisons using Bonferroni correc-
tion (i.e., 0.05/36). 
Relationship Between Cognitive Abilities and 
TFS Perception 

Overall, it was found that there was no significant 
correlation between the tests for cognitive abilities and tests 
for TFS auditory processing (see Figure 3 and Table 2). 
More specifically, Gap Detection did not show any signifi-
cant correlation with Picture Vocabulary (R = −.02, p = 
.902), Flanker (R = −.01, p = .947), Sorting Working 
Memory (R = −.1, p = .554), Dimensional Change Card 
Sort (R = −.13, p = .424), Pattern Comparison (R = −.16, 
p = .345), and Picture Sequence memory (R = −.14, p = 
.405). Dichotic FM did not show any significant correlation 
with Picture Vocabulary (R = .05,  p = .755),  Flanker  (R = 
.19, p = .25), Sorting Working Memory (R = −.02, p = 
.892), Dimensional Change Card Sort (R = .12,  p = .49),
Pattern Comparison (R = −.09, p = .592), and Picture 
Sequence memory (R = .02,  p = .894). Similarly, Diotic 
FM did not show any significant correlation with Picture 
Vocabulary (R = .03,  p = .877), Flanker (R = −.31, p = 
.059), Sorting Working Memory (R = −.25, p = .128),
Dimensional Change Card Sort (R = .1,  p = .545), Pattern 
Comparison (R =  −.13, p = .449), and Picture Sequence 
Memory (R =  −.18, p = .283).
A) Dichotic FM, (B) Gap detection, (C) Diotic FM, (D) Spectral Mod-
ror bars indicate +1 SEM. 

Maggu & Sharma: Cognitive Abilities and Auditory Processing 5
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Figure 3. Scatter plots describing the relationship between the cognitive tests, that is, Picture Vocabulary, Flanker, Sorting Working Memory, 
Dimensional Change Card Sort, Pattern Comparison, and Picture Sequence Memory, and the tests for temporal fine structure perception, 
that is, Gap Detection, Dichotic Frequency Modulation (FM), and Diotic FM. 

 

Relationship Between Cognitive Abilities and 
STS Perception 

Overall, it was found that there was no significant 
correlation between the tests for cognitive abilities and 
tests for STS (see Figure 4 and Table 2). For a target cor-
rected p value of < .0014, SM did not show any signifi-
cant correlation with any of the cognitive tests, that is, 
Dimensional Change Card Sort (R = −.37, p = .021), Pic-
ture Vocabulary (R =  −.26, p = .177), Flanker (R =  −.01, 
•

Table 2. Correlation values of the tests of the PART battery with the 
Battery. 

PART battery 

Temporal fine str

Gap 
detection Dichotic FM

NIH Toolbox 
Cognition 
Battery 

Picture Vocabulary R = −.02, 
p = .902 

R = .05, 
p = .755 

Flanker R =  −.01, 
p = .947 

R =  .19, 
p = .25 

Sorting Working 
Memory 

R =  −.1, 
p = .554 

R =  −.02, 
p = .892 

Dimensional Change 
Card Sort 

R =  −.13, 
p = .424 

R =  .12, 
p = .49 

Pattern Comparison R =  −.16, 
p = .345 

R =  −.09, 
p = .592 

Picture Sequence 
Memory 

R =  −.14, 
p = .405 

R =  .02, 
p = .894 

Note. None of the correlations are significant. p value for significance s
Frequency Modulation; PART = Portable Auditory Rapid Testing.
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p = .974), Sorting Working Memory (R =  −.12, p = .489), 
Pattern Comparison (R =  −.22, p = .177), and Picture 
Sequence Memory (R =  −.01, p = .948). Similarly, TM 
did not show significant correlation with any of the cogni-
tive tests, that is, Dimensional Change Card Sort (R  =
−.34, p = .034), Picture Vocabulary (R =  −.21, p = .211), 
Flanker (R = .01, p = .942), Sorting Working Memory 
(R =  −.13, p = .443), Pattern Comparison (R =  −.31, p = 
.058), and Picture Sequence Memory (R =  .15, p = .375). 
STM also exhibited no significant correlation with any of
tests of the National Institutes of Health (NIH) Toolbox Cognition 

ucture Spectrotemporal sensitivity 

 Diotic FM 
Spectral 

Modulation 
Temporal 
Modulation 

Spectrotemporal 
Modulation 

R =  .03, 
p = .877 

R =  −.26, 
p = .117 

R =  −.21, 
p = .211 

R =  −.09, 
p = .59 

R =  −.31, 
p = .059 

R =  −.01, 
p = .974 

R = .01, 
p = .942 

R =  .03, 
p = .845 

R =  −.25, 
p = .128 

R = −.12, 
p = .489 

R =  −.13, 
p = .443 

R =  −.16, 
p = .343 

R =  .1, 
p = .545 

R =  −.37, 
p = .021 

R =  −.34, 
p = .034 

R =  −.14, 
p = .392 

R =  −.13, 
p = .449 

R = −.22, 
p = .177 

R =  −.31, 
p = .058 

R =  −.41, 
p = .011 

R =  −.18, 
p = .283 

R =  −.01, 
p = .948 

R =  .15, 
p = .375 

R =  .04, 
p = .797 

hould be < .0014, that is, adjusted for multiple comparisons. FM = 
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Figure 4. Scatter plots describing the relationship between the cognitive tests, that is, Picture Vocabulary, Flanker, Sorting Working Memory, 
Dimensional Change Card Sort, Pattern Comparison, and Picture Sequence Memory, and the tests for Spectrotemporal sensitivity percep-
tion, that is, Spectral Modulation, Temporal Modulation, and Spectrotemporal Modulation. 
the other cognitive tests, that is, Pattern Comparison (R =  
−.41, p = .011), Picture Vocabulary (R =  −.09, p = .59), 
Flanker (R =  .03, p = .845), Sorting Working Memory 
(R =  −.16, p = .343), Dimensional Change Card Sort 
(R =  −.14, p = .392), and Picture Sequence Memory (R =
.04, p = .797).
Discussion 

The current study aimed at evaluating the relation-
ship between cognitive abilities and basic auditory process-
ing abilities in young adults. More specifically, we con-
ducted correlational analyses between Picture Vocabulary, 
Flanker, Sorting Working Memory, Dimensional Change 
Card Sort, Pattern Comparison, and Picture Sequence 
Memory components of the NIH Toolbox Cognition Bat-
tery with the tests of TFS (Gap Detection, Dichotic FM, 
and Diotic FM) and STS (SM, TM, and STM) from the 
PART battery (Gallun et al., 2018). Overall, we found no 
significant correlation between cognitive abilities and basic 
auditory processing in young adults. 

The findings of the current study are in contrast 
with the previous studies that have found relationship of 
auditory processing with cognitive abilities (Krizman 
et al., 2012; Machado et al., 2018; Moore et al., 2014). 
For example, studies have found a top-down effect of 
executive function on auditory processing (Krizman et al., 
2012; Machado et al., 2018). However, Krizman et al. 
(2012) studied bilinguals and found an enhanced auditory 
Downloaded from: https://pubs.asha.org Katie Poe on 04/02/2024, Te
processing in them, as assessed via frequency following 
response, that was associated with enhanced executive 
functioning. Machado et al. (2018) found a significant cor-
relation between executive functioning and auditory pro-
cessing, but their subject group was adolescents with otitis 
media. Similarly, Moore et al. (2014) found a correlation 
between processing speed and speech perception in noise 
but their subject age range of 40–69 years. 

Several studies on auditory processing (Ahmmed 
et al., 2014; Jain et al., 2023; Kumar et al., 2021; O’Brien 
et al., 2021; Riccio et al., 2005; Seeto et al., 2021; Tomlin 
et al., 2015) have found significant correlation of working 
memory with the measures of auditory processing. How-
ever, it should be noted that the measures/tests used in the 
previous studies could have already been loaded with 
components that needed employment of cognitive 
resources such as attention and working memory. For 
example, tests such as Spondaic Staggered Word that have 
been used in some of the studies (Cook et al., 1993; Riccio 
et al., 1994, 2005; Tillery et al., 2000) entail remembering 
the bisyllabic words presented simultaneously, one to each 
ear (e.g., sunset to right ear, baseball to left ear) with the 
second syllable of both words presented at the same time 
(i.e., set and ball), and to repeat/identify them correctly. 
In doing this task, individuals need allocation of their 
cognitive–linguistic resources and thus a correlation with 
auditory working memory scores is hardly surprising. Sim-
ilarly, previous studies report that forward digit span, 
backward digit span, and auditory working memory 
exhibit significant correlation with dichotic digit and
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frequency pattern tests in children (Tomlin et al., 2015). 
On the contrary, in the current study, the tests were 
focused on basic sensory auditory processing that did not 
recruit the cognitive resources as much as the auditory 
tasks in the previous studies to exhibit a significant corre-
lation. Along with the difference in the type of tests, 
another difference between the current and the previous 
studies is the type of population studied. Most of the pre-
vious studies that have exhibited a relationship between 
cognitive abilities and auditory processing have been con-
ducted on children, both typical and those diagnosed with 
APD (Ferguson et al., 2011; Gyldenkærne et al., 2014; 
Keller et al., 2006; Moore et al., 2010; Riccio et al., 2005; 
Rosen et al., 2010; Sharma et al., 2009; Wilson et al., 
2011). Apart from studies in children, studies involving 
older adults have also found significant correlations 
between cognitive abilities and auditory processing 
(Charney & Srinivasan, 2020; Grassi & Borella, 2013; 
Neils et al., 1991; O’Brien et al.,  2021;  Sheft et al., 2015).  
Based on the comparison between the current and the 
previous studies, it seems that the two main factors that 
could be driving the significant correlation between cog-
nitive abilities and auditory processing is the complexity 
of the testing material used and the population age being 
tested. More generally, it seems that young children, 
older adults, and those with disorders (e.g., APD) need 
more involvement of cognitive resources in their process-
ing of auditory information. On the other hand, young 
adults may not need as much involvement of cognitive 
resources for processing their auditory information—a 
finding that is visible in the current study. 

The current findings have clinical implications in 
making recommendations on whether cognitive testing 
(beyond IQ measurement) is needed when testing for basic 
auditory processing. Based on the current findings, young 
adults seem to be generally immune to the effects of cog-
nitive abilities on basic auditory processing, especially on 
the tests of STS and TFS. In comparison, during testing 
of children and older adults for APD, it seems that testing 
for cognitive abilities may prove useful, although there is 
a need for a large-scale study to be conducted comparing 
the correlation between cognitive abilities and auditory 
processing across children, young adults, and older adults. 

Limitations and Future Directions 

Although the current study contributes as a key pre-
liminary step in investigating the link between auditory 
processing and cognitive abilities, there are some limita-
tions and scope for future research. First, the sample size 
in current study is relatively small and thus, large-scale 
future studies are needed. Second, the current findings are 
based on young adults with typical auditory processing. 
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Future studies need to be conducted in populations with 
impaired auditory processing. Third, future studies could 
also be conducted using the clinically available tests for 
auditory processing (e.g., speech in noise, dichotic sen-
tences, etc.) to further understand the link between central 
auditory processing and cognitive abilities. 
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